SEMICONDUCTOR ENICONDUCTOR ENICONDUCTOR ENICONDUCTOR FO-220 ITO-220 ITO-220 ITO-220 ITO-220 ITO-220 In Definition: Gate Drain Source

Features

• Low R_{DS(ON)} 4.3Ω (Typ.)

TAIWAN

- Low gate charge typical @ 17nC (Typ.)
- Low Crss typical @ 8.7pF (Typ.)

Ordering Information

Part No.	Package	Packing						
TSM3N90CH C5G	TO-251	75pcs / Tube						
TSM3N90CP ROG	TO-252	2.5Kpcs / 13" Reel						
TSM3N90CZ C0	TO-220	50pcs / Tube						
TSM3N90CI C0G	ITO-220	50pcs / Tube						
Note: "G" denotes for Hologon Free								

Note: "G" denotes for Halogen Free

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Limit Parameter Symbol Unit **IPAK/DPAK ITO-220 TO-220** 900 V **Drain-Source Voltage** V_{DS} ±30 Gate-Source Voltage V_{GS} V 2.5 $Tc = 25^{\circ}C$ А **Continuous Drain Current** I_{D} 1.6 $Tc = 100^{\circ}C$ А Pulsed Drain Current * 10 А I_{DM} Single Pulse Avalanche Energy (Note 2) EAS 10 mJ 2.5 Avalanche Current (Repetitive) (Note 1) I_{AR} А 9.4 Repetitive Avalanche Energy (Note 1) mJ E_{AR} Peak Diode Recovery dv/dt (Note 3) dv/dt 4.5 V/ns Total Power Dissipation @ $T_C = 25^{\circ}C$ 32 94 W **P**_{TOT} 94 150 °C **Operating Junction Temperature** $T_{\rm J}$ -55 to +150 °C Storage Temperature Range T_{STG}

Note: Limited by maximum junction temperature


PRODUCT SUMMARY

V _{DS} (V)		R _{DS(on)} (Ω)	I _D (A)	
	900	5.1 @ V _{GS} =10V	1.25	

General Description

The TSM3N90 N-Channel Power MOSFET is produced by new advance planar process. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

Block Diagram

N-Channel MOSFET

1/12

TSM3N90

900V N-Channel Power MOSFET

Thermal Performance

Parameter		Symbol	IPAK/DPAK	ITO-220		TO-220	Unit
Thermal Resistance - Junction to Case		$R\Theta_{JC}$	1.33	1.33		3.9	°C/W
Thermal Resistance - Junction to Ambient		RƏ _{JA}	110	62.5		5	
Electrical Specifications (Ta = 2		othorwico potod	\ \				
Parameter		nditions	Symbol	Min	Тур	Max	Unit
Static					71		
Drain-Source Breakdown Voltage	$V_{GS} = 0V,$	I _D = 250uA	BV _{DSS}	900			V
Drain-Source On-State Resistance	$V_{GS} = 10V$	′, I _D = 1.25A	R _{DS(ON)}		4.3	5.1	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}$, I _D = 250uA	V _{GS(TH)}	2.0		4.0	V
Zero Gate Voltage Drain Current	$V_{DS} = 900^{\circ}$	V, $V_{GS} = 0V$	I _{DSS}			10	uA
Gate Body Leakage		V, $V_{DS} = 0V$	I _{GSS}			±100	nA
Forward Transfer Conductance	$V_{DS} = 30V$, I _D = 1.25A	g _{fs}		3		S
Dynamic	•		· - ·				
Total Gate Charge			Qg		17		
Gate-Source Charge		V, $I_{\rm D} = 2.5$ A,	Q _{gs}		2.4		nC
Gate-Drain Charge	$V_{GS} = 10V$		Q _{gd}		6.6		
Input Capacitance			C _{iss}		748		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$		C _{oss}		55		pF
Reverse Transfer Capacitance		f = 1.0MHz			8.7		
Switching							1
Turn-On Delay Time			t _{d(on)}		16		
Turn-On Rise Time	$V_{GS} = 10V$	′, I _D = 2.5A,	t _r		25		nS
Turn-Off Delay Time	$V_{DD} = 450$	V, $R_G = 25\Omega$	t _{d(off)}		63		
Turn-Off Fall Time			t _f		31		
Source-Drain Diode Ratings and C	haracteristic	;					
Source Current	Integral re	everse diode in	I _S			2.5	A
Source Current (Pulse)	the MOSF	ET	I _{SM}			10	A
Diode Forward Voltage	$I_{S} = 2.5A,$	$V_{GS} = 0V$	V _{SD}			1.5	V
Reverse Recovery Time	$V_{GS} = 0V,$	I _S =2.5A,	t _{fr}		355		nS
Reverse Recovery Charge	$dI_F/dt = 10$	00A/us	Q _{fr}		1.8		uC

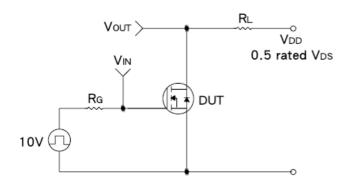
Note 1: Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

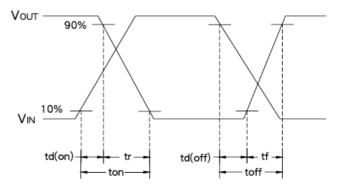
Note 2: Max Rating E_{AS} Test Condition: V_{DD} = 50V, I_{AS} =2A, L=5mH, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C

Guaranteed 100% E_{AS} Test Condition: V_{DD} = 50V, I_{AS} =2A, L=1mH, R_G =25 Ω , Starting T_J =25°C

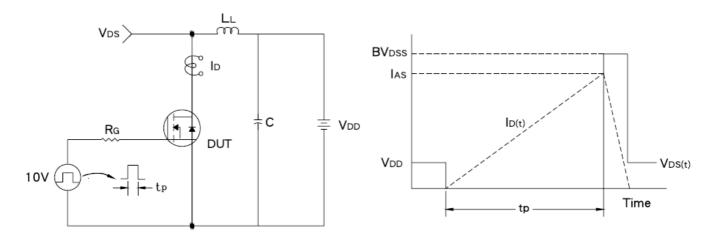
Note 3: I_{SD}≤2.5A, di/dt≤200A/uS, V_{DD}≤BV_{DSS}, Starting T_J=25°C

Note 4: Pulse test: pulse width \leq 300uS, duty cycle \leq 2%

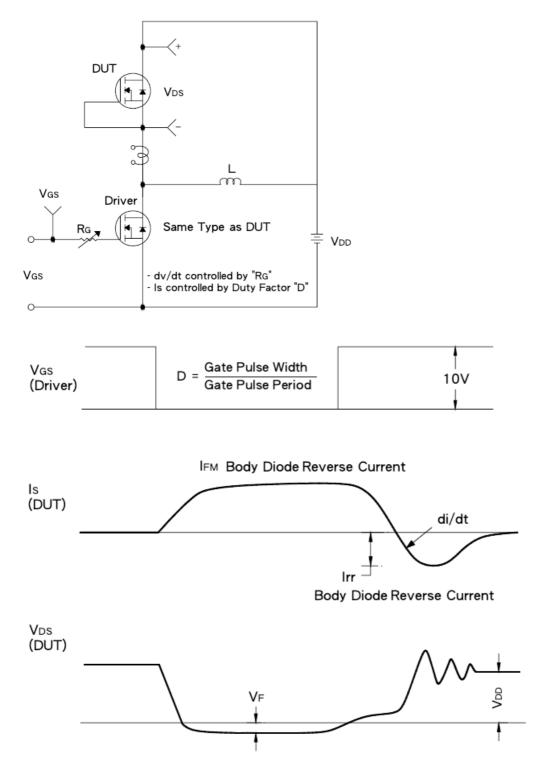

Note 5: Essentially Independent of Operating Temperature



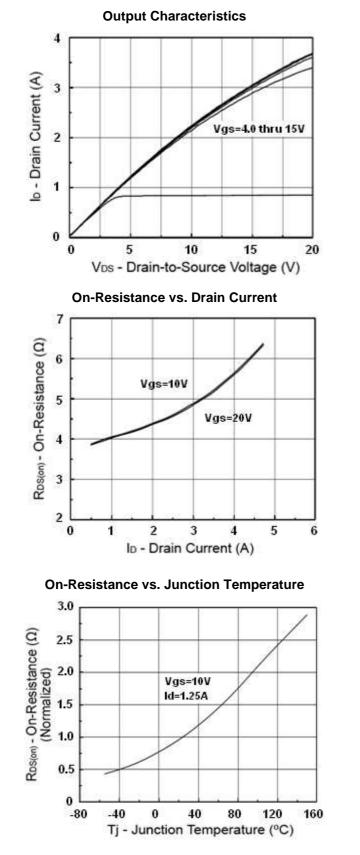
Gate Charge Test Circuit & Waveform

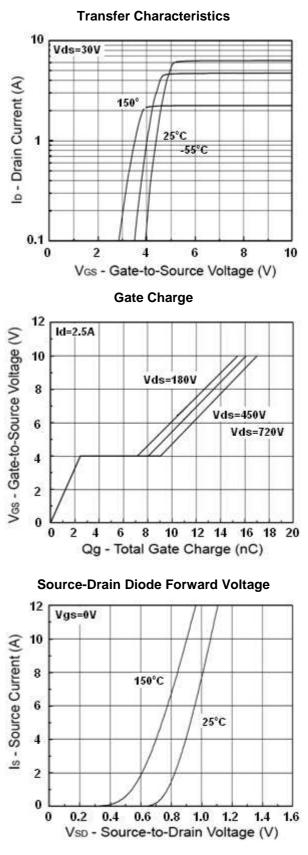


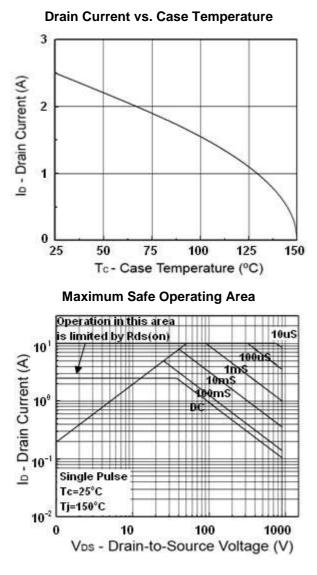
Resistive Switching Test Circuit & Waveform

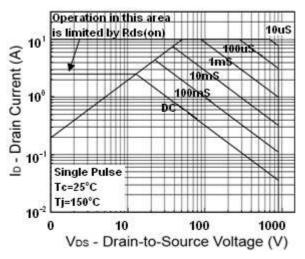


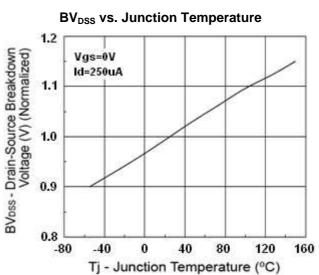
E_{AS} Test Circuit & Waveform



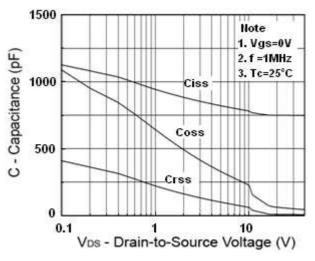

Diode Reverse Recovery Time Test Circuit & Waveform


Electrical Characteristics Curve (Tc = 25°C, unless otherwise noted)

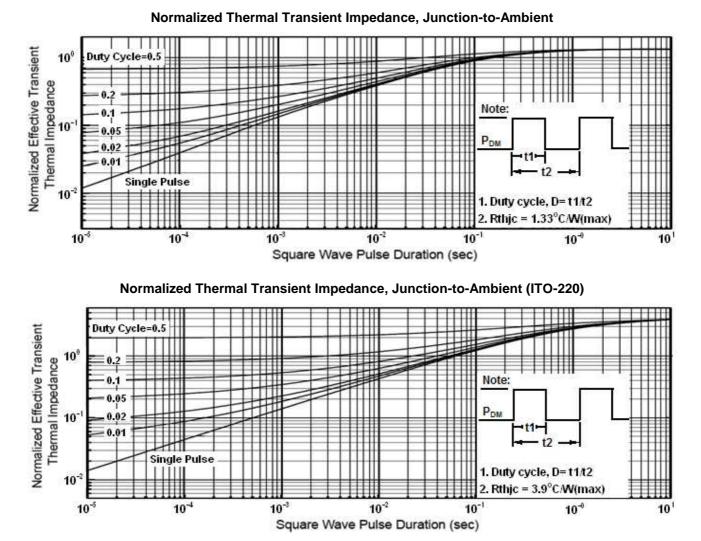




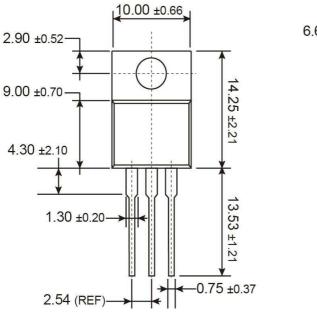
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

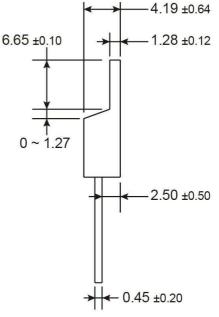


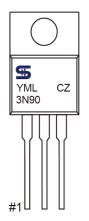
Maximum Safe Operating Area (ITO-220)



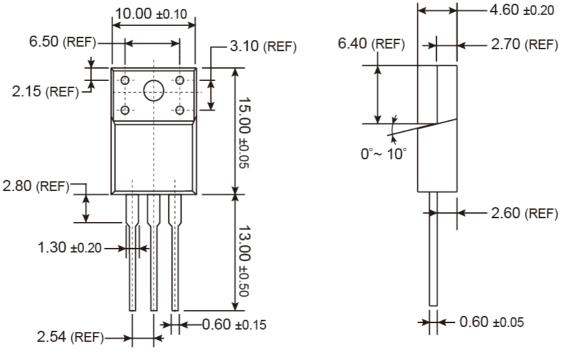
Capacitance vs. Drain-Source Voltage



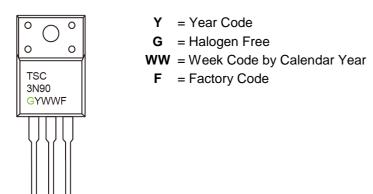

Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


TO-220 Mechanical Drawing

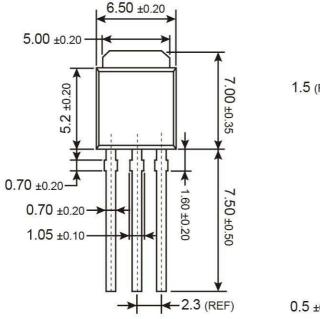
Unit: Millimeters


Marking Diagram

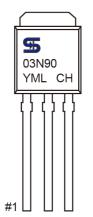
- Y = Year Code
- M = Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)
- L = Lot Code


ITO-220 Mechanical Drawing

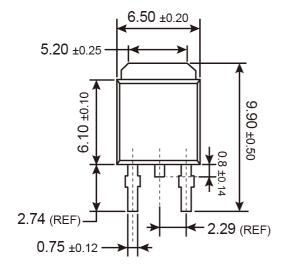
Unit: Millimeters

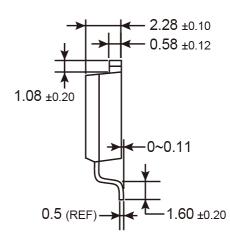

Marking Diagram


#1 L


TO-251 Mechanical Drawing

Unit: Millimeters


Marking Diagram



- Y = Year Code
- M = Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)
- L = Lot Code

TO-252 Mechanical Drawing

Unit: Millimeters

Marking Diagram

- Y = Year Code
- M = Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)
- L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.